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1 Maximum conditional type 1 error rate when selecting

the most promising treatment for the scenario of �exible

second-to-�rst-stage-ratios

The maximum conditional type 1 error rate when selecting the treatment with the

largest observed interim outcome for the scenario of �exible second-to-�rst-stage-ratios

(refer to Section 4.2 in the main document) can be calculated by dividing the interim

sample space into the following subspaces (following the lines of Graf and Bauer , 2011):

I. If Z
(1)
0 < −c1−α the worst case is to set r̃0 = 0 and r̃m = ∞ which leads to a

C̃E = 1. The integration can easily be applied resulting in (1− Φ(c1−α)). If no correc-

tion for multiplicity is done (c1−α = z1−α), this reduces to α.

II. In the subspace where Z
(1)
m > c1−α and Z

(1)
0 > −c1−α similar arguments as in I. can

be applied to get C̃E = 1. The integration can be simpli�ed to Φ(c1−α)(1−Φ(c1−α)
k).

If no adjustment for multiplicity is done, this reduces to α(1− αk).

III. If Z
(1)
0 > 0 and Z

(1)
m < 0 it turned out, that setting r̃0 = r̃m = ∞ leads to

C̃E = 1− Φ(c1−α). The integration in this area can be simpli�ed to (1− Φ(c1−α))
1

2k+1

since P [(Z
(1)
m < 0)∩(Z

(1)
0 > 0)] = 1

2k+1 reducing to α 1
2k+1 if no correction for multiplicity

is done.

IV. If −c1−α < Z
(1)
0 < 0 and −∞ < Z

(1)
m < 0 it can be shown for a pre-�xed critical

value that C̃E = 1 − Φ

(√
(c1−α)2 − (Z

(1)
0 )2

)
. First, performing the integration over

Z
(1)
0 along the arguments of Proschan and Hunsberger (1995) and than over Z

(1)
m results

in

[
e

(−c1−α)2

2 − 2 (1− Φ(c1−α))

]
1

2k+2 .
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V. If Z
(1)
0 > 0 and 0 < Z

(1)
m < c1−α it can be shown that C̃E = 1−Φ

(√
c21−α − (Z

(1)
m )2

)
.

The integration can be simpli�ed to

1

2

∫ c1−α

0

[
1− Φ

(√
(c1−α)2 − (Z

(1)
m )2

)]
kΦ(Z(1)

m )k−1ϕ(Z(1)
m )dZ(1)

m .

VI. It remains the area (0 < Z
(1)
m < c1−α and −c1−α < Z

(1)
0 < 0) where∫ 0

−c1−α

∫ c1−α

0
C̃E(Z(1)

m , Z
(1)
0 )kΦ(Z(1)

m )k−1ϕ(Z(1)
m )ϕ(Z

(1)
0 )dZ(1)

m dZ
(1)
0

Here numerical optimization has to be used. Note however, that if Z
(1)
m >

√
2c1−α+Z

(1)
0

the worst case conditional type 1 error rate C̃E = 1 can be obtained by setting r̃0 =
r̃m = 0.

2 Maximum conditional type 1 error rate for the scenario of

�exible second-to-�rst-stage-ratios for k = 2 and Z
(1)
0 ≥ 0

Z1
(1)

Z
2(1

)

−
3

−
2.

5

−
2

−
1.

5

−
1

−
0.

5 0

0.
5 1

1.
5 2

c 1
−α

2.
5 3

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
c1−α

2.5

3

B.I. B.II.

B.II.

B.II.B.II. B.II.

B.III.

B.IV.

B.V.

Figure 1: Subspaces of the interim outcome of treatment 1 and 2 given Z
(1)
0 ≥ 0 to

be used for evaluating the worst case conditional type 1 error rates in case of �exible

second-to-�rst-stage ratios.

The maximum conditional type 1 error rate for the scenario of k = 2 treatment-control

comparisons and �exible second-to-�rst-stage ratios (refer to Section 5.2. B. in the main

document) for the interim subspace where Z
(1)
0 ≥ 0 can be calculated by dividing this

subspace to �ve parts. Figure 1 shows the partitions (B.I to B.V) in the (Z
(1)
1 , Z

(1)
2 )-

plane given Z
(1)
0 ≥ 0 where separate optimization has to be performed.
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B.I. If both Z
(1)
1 and Z

(1)
2 < 0 (Area B.I in Figure 1) the C̃Eα = 1 − Φ(c1−α)

2 can

be yielded by setting r̃1 = r̃2 = ∞. Two-dimensional integration over this area results

in a contribution to E∗
α of (1− Φ(c1−α)

2)/4.

B.II. For Z
(1)
1 > c1−α or Z

(1)
2 > c1−α (Area B.II. in Figure 1), C̃Eα = 1 (�nal re-

jection) is yielded by setting r̃1 = 0 or r̃2 = 0. The interim e�ect of either treatment

1 or 2 then is tested against the asymptotically �xed µ = 0 (the control group hav-

ing in�nite sample size). Integration over Area B.II. results in 1 − Φ(c1−α)
2 which is

P [(Z
(1)
1 > c1−α) ∪ (Z

(1)
2 > c1−α)].

B.III. and IV. If 0 ≤ Z
(1)
2 < c1−α and Z

(1)
1 < 0 (Area B.III, Figure 1) the worst

case is r̃1 = ∞ and r̃2 =
c21−α−(Z

(1)
2 )2

(Z
(1)
2 )2

, similar to Proschan and Hunsberger (1995).

Hence, C̃Eα = 1 − Φ(c1−α)Φ

(√
c21−α − (Z

(1)
2 )2

)
. By symmetry arguments, for 0 ≤

Z
(1)
1 < c1−α and Z

(1)
2 < 0 (Area B.IV.) the worst case conditional error is C̃Eα =

1− Φ(c1−α)Φ

(√
c21−α − (Z

(1)
1 )2

)
.

Integration over this part results in

Φ(c1−α)−
1

2
(1 + Φ(c1−α)

2) +
1

4
Φ(c1−α)e

−
c21−α

2

using analogous arguments as in the Appendix of Proschan and Hunsberger (1995).

B.V. If both 0 ≤ Z
(1)
1 , Z

(1)
2 < c1−α (Area V. in Figure 1) the worst case second-to-�rst-

stage ratio r̃i can be separately derived for both treatment groups along the lines of

Proschan and Hunsberger (1995) arriving at

C̃Eα = 1− Φ

(√
c21−α − (Z

(1)
1 )2

)
Φ

(√
c21−α − (Z

(1)
2 )2

)
resulting in a contribution of this subspace of(

Φ(c1−α)−
1

2

)2

−
(
1

2
Φ(c1−α)−

1

4
e−

c21−α
2

)2

.

again using arguments as in the Appendix of Proschan and Hunsberger (1995).
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